The scaffolding protein EBP50 promotes vascular smooth muscle cell proliferation and neointima formation by regulating Skp2 and p21(cip1).
نویسندگان
چکیده
OBJECTIVE The Ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50) is a scaffolding protein known to regulate ion homeostasis in the kidney and intestine. Previous work showed that EBP50 expression increases after balloon injury in rat carotids. This study was designed to determine the role of EBP50 on vascular smooth muscle cells (VSMC) proliferation and the development of neointimal hyperplasia. METHODS AND RESULTS Wire injury was performed in wild type (WT) and EBP50 knockout (KO) mice. Two weeks after injury, neointima formation was 80% lower in KO than in WT mice. Proliferation of KO VSMC was significantly lower than WT cells and overexpression of EBP50 increased VSMC proliferation. Akt activity and expression of S-phase kinase protein2 decreased in KO cells resulting in the stabilization of the cyclin-dependent kinase inhibitor, p21(cip1). Consequently, KO cells were arrested in G(0)/G(1) phase. Consistent with these observations, p21(cip1) was detected in injured femoral arteries of KO but not WT mice. No differences in apoptosis between WT and KO were observed. CONCLUSIONS EBP50 is critical for neointima formation and induces VSMC proliferation by decreasing S-phase kinase protein2 stability, thereby accelerating the degradation of the cell cycle inhibitor p21(cip1).
منابع مشابه
The Scaffolding Protein EBP50 Promotes Vascular Smooth Muscle Cell Proliferation and Neointima Formation by Regulating Skp2 and p21
Objective—The Ezrin-radixin–moesin– binding phosphoprotein 50 (EBP50) is a scaffolding protein known to regulate ion homeostasis in the kidney and intestine. Previous work showed that EBP50 expression increases after balloon injury in rat carotids. This study was designed to determine the role of EBP50 on vascular smooth muscle cells (VSMC) proliferation and the development of neointimal hyperp...
متن کاملAdenosine Attenuates Human Coronary Artery Smooth Muscle Cell Proliferation by Inhibiting Multiple Signaling Pathways That Converge on Cyclin D.
The goal of this study was to determine whether and how adenosine affects the proliferation of human coronary artery smooth muscle cells (HCASMCs). In HCASMCs, 2-chloroadenosine (stable adenosine analogue), but not N(6)-cyclopentyladenosine, CGS21680, or N(6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide, inhibited HCASMC proliferation (A2B receptor profile). 2-Chloroadenosine increased cAMP, r...
متن کاملIntron retention generates a novel Id3 isoform that inhibits vascular lesion formation.
The expression of intron-containing messages has been shown to occur in a variety of diseases including lactic acidosis, Cowden Syndrome, and several cancers. However, it is unknown whether these intron-containing messages result in protein production in vivo. Indeed, intron-containing RNAs are typically retained in the nucleus, targeted for degradation, or are repressed translationally. Here, ...
متن کاملMolecular Medicine AMPK 2 Deletion Exacerbates Neointima Formation by Upregulating Skp2 in Vascular Smooth Muscle Cells
Rationale: Adenosine monophosphate-activated protein kinase (AMPK), a metabolic and redox sensor, is reported to suppress cell proliferation of nonmalignant and tumor cells. Whether AMPK alters vascular neointima formation induced by vascular injury is unknown. Objective: The aim of this study was to determine the roles of AMPK in the development of vascular neointima hyperplasia and to elucida...
متن کاملEpigenetic regulation of vascular smooth muscle cell proliferation and neointima formation by histone deacetylase inhibition.
OBJECTIVE Proliferation of smooth muscle cells (SMC) in response to vascular injury is central to neointimal vascular remodeling. There is accumulating evidence that histone acetylation constitutes a major epigenetic modification for the transcriptional control of proliferative gene expression; however, the physiological role of histone acetylation for proliferative vascular disease remains elu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 32 1 شماره
صفحات -
تاریخ انتشار 2012